Science Journals RSS Feeds
Sponsored Links
Recent Comments

    Physics

    A single and isolated electron has a clear electrical charge, magnetic moment and mass, and its free movement can be precisely predicted. Spanish scientists fabricated a nanoscale artificial material manipulating atoms one after the other and discovered that electrons can become heavier. Heavy electrons are promising particles which endow new functionalities to novel materials. This study is the result of an international collaboration lead by the Instituto de Nanociencia de Aragón and the Instituto de Ciencia de Materiales de Aragón (ICMA), in which scientists at CIC nanoGUNE participated, together with members of the Centro de Física de Materiales (CFM) in San Sebastian, and the Charles University and Czech Academy of Sciences, in the Czech Republic. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    Fibre optic research can give us better medical equipment, improved environmental monitoring, more media channels—and maybe better solar panels. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    The Standard Model is a remarkably successful but incomplete theory. Supersymmetry (SUSY) offers an elegant solution to the Standard Model's limitations, extending it to give each particle a heavy "superpartner" with different spin properties (an important quantum number distinguishing matter particles from force particles and the Higgs boson). For example, sleptons are the spin 0 superpartners of spin 1/2 electrons, muons and tau leptons, while charginos and neutralinos are the spin 1/2 counterparts of the spin 0 Higgs bosons (SUSY postulates a total of five Higgs bosons) and spin 1 gauge bosons. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    The International Space Station will host the most precise clocks ever to leave Earth. Accurate to a second in 300 million years the clocks will push the measurement of time to test the limits of the theory of relativity and our understanding of gravity. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    While prescribed fires are common tools in wildland management, a combination of smoke and fog, known as superfog, has in some cases crossed over major roadways, leading to multicar pileups and fatalities in visibility of less than 3 meters. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    Researchers have developed a unique high-resolution imaging method that can capture mid-infrared spectral images of fast events or dynamic processes that take place on the order of milliseconds. This spectral range is used for many applications because it can reveal the detailed chemical composition of a sample. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    Scientists from Tomsk Polytechnic University together with colleagues proposed using special diffraction gratings with gold plates instead of microlenses used in the classic configuration to obtain images in nanoscopes. Microlenses transmit images by small pieces (pixels), whereas diffraction gratings allow you to see the whole object. Such innovation can help to accelerate the generation of images from nanoscopes without losing any magnification power. The results of the study are presented in the journal Annalen der Physik. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    For scientists tracking the transformation of protons and neutrons—the components of atomic nuclei that make up everything we see in the universe today—into a soup of fundamental building blocks known quark-gluon plasma, more is better. More particle tracks, that is. Thanks to a newly installed upgrade of the STAR detector at the Relativistic Heavy Ion Collider (RHIC), nuclear physicists now have more particle tracks than ever to gain insight into the crucial matter-building transition that ran this process in reverse nearly 14 billion years ago. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    The electronic Barnett effect, first observed by Samuel Barnett in 1915, is the magnetization of an uncharged body as it is spun on its long axis. This is caused by a coupling between the angular momentum of the electronic spins and the rotation of the rod. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    Physicists at the University of Basel have shown for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B. [...]
    Thu, May 23, 2019
    Source: Physorg Physics Category: PHYSICS
    Sponsored Links
    Archives

    Copyright © 2013. All Rights Reserved.