Science Journals RSS Feeds
Sponsored Links
Recent Comments

    Physics

    Novel materials convert infrared light into visible light (Update)

    Columbia University scientists, in collaboration with researchers from Harvard, have succeeded in developing a chemical process to convert visible light into infrared energy, allowing innocuous radiation to penetrate living tissue and other materials without the damage caused by high-intensity light exposure. …read more

    Source:: Physorg Physics

          

    Fiery sighting: A new physics of eruptions that damage fusion experiments

    Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called “edge localized modes (ELMs),” occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars. Now researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs. …read more

    Source:: Physorg Physics

          

    Researchers establish principles for transmitting light-delivered data via nonreciprocal circuits

    The development of fiber optics technology has been indispensable to increasing the speed at which information is delivered over large distances by relying on light to carry information rather than electricity. Currently, incoming light signals are converted into electrical signals, after which the information they carry is processed. Digital communications and sharing of information would be even faster and more energy efficient if light could be used throughout the entire process, but significant additional advances in integrated optical circuits and light-based computing are still required. …read more

    Source:: Physorg Physics

          

    Understanding insulators with conducting edges

    Insulators that are conducting at their edges hold promise for interesting technological applications. However, until now their characteristics have not been fully understood. Physicists at Goethe University have now modelled what are known as topological insulators with the help of ultracold quantum gases. In the current issue of Physical Review Letters, they demonstrate how the edge states could be experimentally detected. …read more

    Source:: Physorg Physics

          

    New quantum structures in super-chilled helium may mirror early days of universe

    For the first time, researchers have documented the long-predicted occurrence of ‘walls bound by strings’ in superfluid helium-3. The existence of such an object, originally foreseen by cosmology theorists, may help explaining how the universe cooled down after the Big Bang. With the newfound ability to recreate these structures in the lab, earth-based scientists finally have a way to study some of the possible scenarios that might have taken place in the early universe more closely. …read more

    Source:: Physorg Physics

          

    Physicists discover new effect in the interaction of plasmas with solids

    Plasmas—hot gases consisting of chaotically-moving electrons, ions, atoms and molecules—comprise the interiors of stars, but scientists can create them artificially using special equipment in the laboratory. If a plasma comes in contact with a solid, such as the wall of the lab equipment, under certain circumstances, the wall is changed fundamentally and permanently: Atoms and molecules from the plasma can be deposited on the solid material, or energetic plasma ions can knock atoms out of the solid, and thereby deform or even destroy its surface. A team from the Institute of Theoretical Physics and Astrophysics at Kiel University (CAU) has now discovered a surprising new effect in which the electronic properties of the solid material, such as its electrical conductivity, can be changed by ion impact in a controlled, extremely fast and reversible manner. Their results were recently published in Physical Review Letters. …read more

    Source:: Physorg Physics

          

    Experiments detect entropy production in mesoscopic quantum systems

    The production of entropy, which means increasing the degree of disorder in a system, is an inexorable tendency in the macroscopic world owing to the second law of thermodynamics. This makes the processes described by classical physics irreversible and, by extension, imposes a direction on the flow of time. However, the tendency does not necessarily apply in the microscopic world, which is governed by quantum mechanics. The laws of quantum physics are reversible in time, so in the microscopic world, there is no preferential direction to the flow of phenomena. …read more

    Source:: Physorg Physics

          

    Mechanism helps explain the ear’s exquisite sensitivity

    The human ear, like those of other mammals, is so extraordinarily sensitive that it can detect sound-wave-induced vibrations of the eardrum that move by less than the width of an atom. Now, researchers at MIT have discovered important new details of how the ear achieves this amazing ability to pick up faint sounds. …read more

    Source:: Physorg Physics

          

    Three-dimensional femtosecond laser nanolithography of crystals

    Optical properties of materials are based on their chemistry and the inherent subwavelength architecture, although the latter remains to be characterized in depth. Photonic crystals and metamaterials have proven this by providing access through surface alterations to a new level of light manipulation beyond the known natural optical properties of materials. Yet, in the past three decades of research, technical methods have been unable to reliably nanostructure hard optical crystals beyond the material surface for in-depth optical characterization and related applications. …read more

    Source:: Physorg Physics

          

    Sponsored Links
    Archives

    Copyright © 2013. All Rights Reserved.