Science Journals RSS Feeds
Sponsored Links
Recent Comments

    Physics

    Unexpected observation of ice at low temperature, high pressure questions water theory

    Through an experiment designed to create a super-cold state of water, scientists at the Department of Energy’s Oak Ridge National Laboratory used neutron scattering to discover a pathway to the unexpected formation of dense, crystalline phases of ice thought to exist beyond Earth’s limits. …read more

    Source:: Physorg Physics

          

    New data on ultrafast electron photoemission from metallic nanostructures obtained

    The results of a Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation. Metallic nanoparticle ensembles are capable of emitting short bunches of electrons when irradiated by powerful laser pulses of femtosecond (1 fs = 10-15 s) duration. Scientists at Lobachevsky University have long studied the plasmon effect—the excitation by light of collective electron oscillations in nanoparticles and the amplification of the light field associated with these oscillations in the vicinity of the nanoparticle, which plays the main role in this process. It is the plasmon amplification of the field that provides effective photoemission of electrons from a metal. …read more

    Source:: Physorg Physics

          

    Nanoscopic protein motion on a live cell membrane

    Cellular functions are dictated by the intricate motion of proteins in membranes that span across a scale of nanometers to micrometers, within a time-frame of microseconds to minutes. However, this rich parameter of space is inaccessible using fluorescence microscopy, although it is within reach of interferometric scattering (iSCAT) particle tracking. The new iSCAT technique is, however, highly sensitive to single and unlabelled proteins, thereby causing non-specific background staining as a substantial challenge during cellular imaging. …read more

    Source:: Physorg Physics

          

    Learning magnets could lead to energy-efficient data processing

    The power consumption of data centers around the world is increasing. This creates a high demand for new technologies that could lead to energy-efficient computers. In a new study, physicists at Radboud University have demonstrated that this could also be achieved by using chips whose operation is inspired by that of the human brain. The study was published in the scientific journal Applied Physics Letters on 16 May. …read more

    Source:: Physorg Physics

          

    Physicists propose a second level of quantization for quantum Shannon theory

    Information theory, which was developed by Claude Shannon starting in the late 1940s, deals with questions such as how quickly information can be sent over a noisy communications channel. Both the information carriers (e.g., photons) and the channel (e.g., optical fiber cable) are assumed to be classical systems, with well-defined, perfectly distinguishable states. …read more

    Source:: Physorg Physics

          

    Creating integrated circuits that can generate chaotic signals

    Researchers at Tokyo Institute of Technology have found a simple, yet highly versatile way to generate “chaotic signals” with various features. The technique consists of interconnecting three ring oscillators, effectively making them compete against each other, while controlling their respective strengths and their linkages. The resulting device is rather small and efficient, thus suitable for emerging applications such as realizing wireless networks of sensors. …read more

    Source:: Physorg Physics

          

    Sponsored Links
    Archives

    Copyright © 2013. All Rights Reserved.